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Abstract. The e. m. dispersive corrections to the πN scattering lengths are derived using minimal
e. m. coupling in PCAC for the nucleon and ∆ pole terms in the heavy baryon limit. Form factors
and masses are assumed to have their empirical values, with no free parameter. This approach gives
a large correction to the elastic charged-pion isoscalar scattering length. The result is compared to
that of chiral effective field theory (EFT) and applied to the 1S energy shift of the π−p atom.
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For purely strong interactions the πN scattering amplitudes at threshold are funda-
mental quantities which enter into the discussion of various problems. They provide a
basic test of the Tomozawa-Weinberg chiral relation for the isovector and isoscalar scat-
tering lengths a− and a+, respectively, in the limit ω → 0 with a− = ω/(8πF2

π ) and
' 0.089 m−1

π ; a+ = 0 , where Fπ ' 93 MeV is the pion decay constant and ω = mπ

at threshold. Second, the empirical isovector scattering length is the main ingredient
and uncertainty in the GMO dispersion relation by which the πNN coupling constant
14.11± 0.05 is determined[1] etc. The major precision source for these quantities are
the remarkable measurements of the 1s level shifts in pionic hydrogen and deuterium as
well as the corresponding widths. For pionic hydrogen the precision is 0.2% for the shift
and 4% for the width [2, 3]. Since the (complex) energy shift relates exactly to order α2

to the so-called Coulomb scattering length by ε1s ∝ φ 2
Bohr(0)aC, these quantities convert

to similar precision for the hadronic scattering length ah but for e. m. corrections.
Such corrections to the amplitude can be evaluated either using chiral effective field

theory (EFT) [4, 5, 6] in terms of a systematic momentum expansion in orders O(pn) and
α or, alternatively, in terms of a complementary, less ambitious but more physical, wave
function approach, which we are presently developing [7, 8]. The latter assumes that
the hadronic interaction is of short range and that the e. m. form factor determining the
charge distribution is empirically known. In the heavy baryon limit, gauge invariance and
the known low energy expansion of the πN amplitude give then the correction provided
the hadronic interaction is treated as an effective Lagrangian one. This gives 3 natural
e. m. correction terms for the π−p case in terms the hadronic scattering length ah [7]:

1. The correct wave function at r = 0 for the extended charge distribution:
(δah/ah)w f =−2αmπ〈r〉em ' (−0.9%).
2. The correct final state wave function of the extended charge distribution (cusp):
(δah/a2

h)cusp =−8πα [2− γ + log2α −〈logmπr〉em]' (+0.7%).
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3. The correct interaction energy at r = 0 in the Coulomb field of the extended charge
distribution by gauge invariance; the parameter bh describes the energy dependence:

(δah)gauge = (−α〈1
r 〉em)bh ' (−1.0%)ah

These corrections are exact to order O(α2) in the limit of a short ranged strong
interaction and no inelastic intermediate states. Here we generalize to the problem
by including inelastic intermediate states from processes πN → γX . A guide to the
importance of such terms is the dominant contribution of the Kroll-Ruderman radiative
capture process π−p → γn at threshold [9], which leads to an observed 1s width which
is 8% of the observed 1s interaction shift, a huge number.

The matrix element for this radiative capture can, for example, be derived from the
Partially Conserved Axial Current (PCAC) relation using minimal e. m. coupling

∂µAµ =−m2
πF2

π φπ(x); ∂µ → ∂µ ± ieAµ , (1)

where Aµ is the e. m. 4-vector potential. This corresponds to electric dipole (E1)
radiation due to the discontinuity in the current. In the heavy baryon limit and at
threshold the radiation comes only from the vertex itself .

The characteristic features of the contribution from π±N → γN′ → π±N are:
-the transition is an axial one with a a well defined strength.
-the axial form factor FA(~q 2) is well approximated by a dipole shape.
FA(~q 2) = (1+~q 2/M2

A)−2 with MA = (960±30)MeV.
- typical energy denominators (p±mπ)−1 appear from intermediate states with the

sign switch due to crossing. For the π±p case(
1+ mπ

MN

)
δa(N′γ)

1s = 3α

8π2
g2

A
F2

π

P
∫

∞

0
d p pF2

A (p2)
p±mπ−i0 .

In the soft limit mπ = 0 this results in a large nucleon isoscalar term of 3%. However,
the ∆ isobar and the nucleon are basically identical, but for the N∆ mass splitting
and weight factors. It is unnatural to include the nucleon only. In the limit of no
N∆ mass splitting, the additional ∆ intermediate states lead to a multiplicative factor
25/9 as compared to the result with the intermediate nucleon only. This increases the
previous 3% to 9%, an enormous correction! Why is this so large? The reason is that
the scale parameter is the axial mass MA and not the pion one mπ which gives a factor 7
enhancement. When the N∆ mass splitting of ≈ 2mπ is brought in, it cuts the γ∆ term by
50% to a total isoscalar correction of about +6%. This is still very large, but we expect
relativistic kinematic factors to cut it additionally to about 4.8%.

If mπ 6= 0, new characteristic terms appear of the type cmπ ln(mπ/MA)+d mπ , These
are generated both from the nucleon and the ∆ intermediate states and they depend only
weakly on the exact value of MA. In the particular case of the nucleon intermediate state,
the term proportional to mπ lnmπ has the identical coefficient to the one found to third
order in chiral EFT by Gasser et al. [6]. If we expand the amplitude δa(nγ)

1s for the π−p
case in in terms of the small parameter x = xπ = mπ/MA , we have:(

1+ mπ

MN

)
δa(nγ)

1s = 3α

8π2
g2

A
F2

π

[
5π

32 MA−mπ

(
ln mπ

MA
+ 11

12 +O(mπ

MA

)]
.

When the ∆ isobar is degenerate with the nucleon, the nucleon pion-mass term is
strongly canceled, such that the dependence on the pion mass becomes negligible.
However, with the empirical N∆ mass splitting, the ∆ pion-mass contributions are
quenched such that the contribution from the nucleon result is partly restored.
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One can now compare these results to those obtained using an effective chiral La-
grangian [4, 6] to leading order. We only sketch a comparison of some specific points. It
is important to realize that certain of the predictions of such an effective field theory are
specific to EFT and outside our present approach, while, on the contrary, our approach
automatically generates some terms which require higher order in the EFT expansion.
In the heavy baryon limit, the e. m. isospin breaking in the πN threshold amplitudes are
related to the the e. m. mass of the nucleon and the np e. m. mass difference in the EFT
beyond the purely kinematic effects [5]. To next-to-leading order these relations can be
expressed in terms of 3 unknown constants f1,2,3; we obtain model predictions for f1
and f2. Using π±p elastic scattering for illustration gives the following relations

Mem
n =−e2F2

π

[
f1 + f3

]
; Mem

p =−e2F2
π

[
f1 + f2 + f3

]
; aem

π±p =−2πα[ f1± 1
4 f2].

The dispersive contribution from intermediate γN(∆) states to the scattering length
is isoscalar in the charged pion sector in the limit of a vanishing pion mass and has
the symmetry property of the contribution in EFT by the next-to-leading order constant
f1. This constant appears as well a part of the e. m. neutron mass Mem

n , but then it
always comes in the combination f1 + f3. Such terms cannot be physically separated [5].
Our value with the physical ∆ isobar included gives F2

π f1 = −28(1) MeV Dimensional
estimates inside of EFT give intermediate estimates F2

π | f1|= 6 MeV and 12 MeV [5, 6].
There appears therefore to be little relation of this parameter with the neutron e. m. mass,
which suggests a massive cancellation between the EFT constants f1 and f3.

Isospin violation in πN elastic scattering has been shown here to have well determined
contributions originating in the Coulomb field of the extended charge with little model
dependence. These corrections are general and involve terms beyond present EFT ap-
proaches. To next-to-leading order in the chiral expansion our terms have counterparts
in EFT. The dispersive term with γN(∆) intermediate states gives an important isoscalar
isospin breaking term which can be viewed at as the major model contribution to the
EFT constant f1. For a non-vanishing pion mass, the same mechanism generates a small
and model-insensitive isospin breaking in the isovector interaction consistent with the
finding of Meissner et al. [5]. A detailed conference presentation of the present material
can be found in hep-ph/0504258.
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